Isolation of Mesenchymal Stem Cells from Shoulder Rotator Cuff: A Potential Source for Muscle and Tendon Repair

Author:

Tsai Chih-Chien12,Huang Tung-Fu34,Ma Hsiao-Li34,Chiang En-Rung134,Hung Shih-Chieh12345

Affiliation:

1. Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

2. Stem Cell Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan

3. Department of Orthopaedics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan

4. Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan

5. Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan

Abstract

The self-healing potential of each tissue belongs to endogenous stem cells residing in the tissue; however, there are currently no reports mentioned for the isolation of human rotator cuff-derived mesenchymal stem cells (RC-MSCs) since. To isolate RC-MSCs, minced rotator cuff samples were first digested with enzymes and the single cell suspensions were seeded in plastic culture dishes. Twenty-four hours later, nonadherent cells were removed and the adherent cells were further cultured. The RC-MSCs had fibroblast-like morphology and were positive for the putative surface markers of MSCs, such as CD44, CD73, CD90, CD105, and CD166, and negative for the putative markers of hematopoietic cells, such as CD34, CD45, and CD133. Similar to BM-MSCs, RC-MSCs were demonstrated to have the potential to undergo osteogenic, adipogenic, and chondrogenic differentiation. Upon induction in the defined media, RC-MSCs also expressed lineage-specific genes, such as Runx 2 and osteocalcin in osteogenic induction, PPAR-γ and LPL in adipogenic differentiation, and aggrecan and Col2a1 in chondrogenic differentiation. The multipotent feature of RC-MSCs in the myogenic injury model was further strengthened by the increase in myogenic potential both in vitro and in vivo when compared with BM-MSCs. These results demonstrate the successful isolation of MSCs from human rotator cuffs and encourage the application of RC-MSCs in myogenic regeneration.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3