Functional Repair of Rat Corticospinal Tract Lesions Does Not Require Permanent Survival of an Immunoincompatible Transplant

Author:

Li Ying1,Li Daqing1,Raisman Geoffrey1

Affiliation:

1. Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK

Abstract

Cell transplantation is one of the most promising strategies for repair of human spinal cord injuries. Animal studies from a number of laboratories have shown that transplantation of olfactory ensheathing cells cultured from biopsies of the olfactory bulb mediate axonal regeneration and remyelination and restore lost functions in spinal cord injuries. For translation from small laboratory experimental injuries to the large spinal cord injuries encountered in human patients the numbers of cells that can be obtained from a patient's own olfactory bulb becomes a serious limiting factor. Furthermore, removal of an olfactory bulb requires invasive surgery and risks unilateral anosmia. We here report that xenografted mouse bulbar olfactory ensheathing cells immunoprotected by daily cyclosporine restore directed forepaw reaching function in rats with chronic C1/2 unilateral corticospinal tract lesions. Once function had been established for 10 days, cyclosporine was withdrawn. Thirteen out of 13 rats continued to increase directed forepaw reaching. Immunohistochemistry shows that in all cases neurofilament-positive axons were present in the lesion, but that the grafted cells had been totally rejected. This implies that once grafted cells have acted as bridges for axon regeneration across the lesion site their continued presence is no longer necessary for maintaining the restored function. This raises the possibility that in the future a protocol of temporary immunoprotection might allow for the use of the larger available numbers of immunoincompatible allografted cells or cell lines, which would avoid the need for removing a patient's olfactory bulb.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3