Teratocarcinoma Formation in Embryonic Stem Cell-Derived Neural Progenitor Hippocampal Transplants

Author:

Germain Noélle D.1,Hartman Nathaniel W.1,Cai Chunyu1,Becker Sandy1,Naegele Janice R.12,Grabel Laura B.1

Affiliation:

1. Department of Biology, Wesleyan University, Middletown, CT, USA

2. Program in Neuroscience and Behavior, Wesleyan University, Middletown, CT, USA

Abstract

Embryonic stem cells (ESCs) hold great therapeutic potential due to their ability to differentiate into cells of the three primary germ layers, which can be used to repopulate disease-damaged tissues. In fact, two cell therapies using ESC derivatives are currently in phase I clinical trials. A main concern in using ESCs and their derivatives for cell transplantation is the ability of undifferentiated ESCs to generate tumors in the host. Positive selection steps are often included in protocols designed to generate particular cell types from ESCs; however, the transition from ESC to progenitor cell or terminally differentiated cell is not synchronous, and residual undifferentiated cells often remain. In our transplants of ESC-derived neural progenitors (ESNPs) into the adult mouse hippocampus, we have observed the formation of teratocarcinomas. We set out to reduce teratocarcinoma formation by enrichment of ESNPs using fluorescence-activated cell sorting (FACS) and have found that, although enrichment prior to transplant reduces the overall rate of teratocarcinoma formation, the tumorigenicity of cell batches can vary widely, even after FACS enrichment to as much as 95% ESNPs. Our data suggest that this variability may be due to the percentage of residual ESCs remaining in the transplant cell population and to the presence of pluripotent epiblast-like cells, not previously identified in transplant batches. Our data emphasize the need for stringent characterization of transplant cell populations that will be used for cell replacement therapies in order to reduce the risk of tumor formation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3