Comparison of Transplant Efficiency between Spontaneously Derived and Noggin-Primed Human Embryonic Stem Cell Neural Precursors in the Quinolinic Acid Rat Model of Huntington's Disease

Author:

Vazey Elena M.1,Dottori Mirella2,Jamshidi Pegah3,Tomas Doris4,Pera Martin F.5,Horne Malcolm34,Connor Bronwen1

Affiliation:

1. Department of Pharmacology and Clinical Pharmacology, FMHS, University of Auckland, Auckland, New Zealand

2. Centre for Neuroscience and Department of Pharmacology, University of Melbourne, Parkville, Australia

3. Monash Institute of Medical Research, Monash University, and The Australian Stem Cell Centre, Victoria, Australia

4. Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria, Australia

5. Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

Abstract

Human neural precursors (hNP) derived from embryonic stem cells (hESC) may provide a viable cellular source for transplantation therapy for Huntington's disease (HD). However, developing effective transplantation therapy for the central nervous system (CNS) using hESC relies on optimizing the in vitro production of hNP to control appropriate in vivo posttransplantation neuronal differentiation. The current study provides the first direct in vivo comparison of the transplant efficiency and posttransplantation characteristics of spontaneously derived and noggin-primed hNP following transplantation into the quinolinic acid (QA) rat model of HD. We show that spontaneously derived and noggin-primed hNP both survived robustly up to 8 weeks after transplantation into the QA-lesioned striatum of the adult rat. Transplanted hNP underwent extensive migration and large-scale differentiation towards a predominantly neuronal fate by 8 weeks posttransplantation. Furthermore, in vitro noggin priming of hNP specifically increased the extent of neuronal differentiation at both 4 and 8 weeks posttransplantation when compared to spontaneously derived hNP grafts. The results of this study suggest that in vitro noggin priming provides an effective mechanism by which to enhance hNP transplant efficiency for the treatment of HD.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3