NUP98-HOXA10hd-Expanded Hematopoietic Stem Cells Efficiently Reconstitute Bone Marrow of Mismatched Recipients and Induce Tolerance

Author:

Even Y.1,Bennett J. L.1,Sekulovic S.2,So L.1,Yi L.1,McNagny K.3,Humphries R. K.13,Rossi F. M. V.1

Affiliation:

1. Department of Medicine, The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada

2. The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada

3. Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada

Abstract

Gene therapy as well as methods capable of returning cells to a pluripotent state (iPS) have enabled the correction of genetic deficiencies in syngenic adult progenitors, reducing the need for immunosuppression in cell therapy approaches. However, in diseases involving mutations that lead to the complete lack of a protein, such as Duchenne muscular dystrophy, the main immunogens leading to rejection of transplanted cells are the therapeutic proteins themselves. In these cases even iPS cells would not circumvent the need for immunosuppression, and alternative strategies must be developed. One such potential strategy seeks to induce immune tolerance using hematopoietic stem cells originated from the same donor or iPS line from which the therapeutic progenitors are derived. However, donor hematopoietic stem cells (HSCs) are available in limiting numbers and embryonic stem (ES) cell-derived HSCs engraft poorly in adults. While these limitations have been circumvented by ectopic expression of HOXB4, overexpression of this protein is associated with inefficient lymphoid reconstitution. Here we show that adult HSCs expanded with a NUP98-HOXA10hd fusion protein sustain long-term engraftment in immunologically mismatched recipients and generate normal numbers of lymphoid cells. In addition, NUP98-HOXA10hd-expanded cells induce functional immune tolerance to a subsequent transplant of myogenic progenitors immunologically matched with the transplanted HSCs.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3