18F-FDG Cell Labeling May Underestimate Transplanted Cell Homing: More Accurate, Efficient, and Stable Cell Labeling with Hexadecyl-4-[18F]Fluorobenzoate for in Vivo Tracking of Transplanted Human Progenitor Cells by Positron Emission Tomography

Author:

Zhang Yan1234,Dasilva Jean N.234,Hadizad Tayebeh23,Thorn Stephanie234,Kuraitis Drew134,Renaud Jennifer M.23,Ahmadi Ali134,Kordos Myra23,Dekemp Robert A.23,Beanlands Rob S.234,Suuronen Erik J.134,Ruel Marc134

Affiliation:

1. Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Canada

2. Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada

3. Molecular Function and Imaging Program, University of Ottawa Heart Institute, Ottawa, Canada

4. Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada

Abstract

Cell therapy is expected to restore perfusion and improve function in the ischemic/infarcted myocardium; however, the biological mechanisms and local effects of transplanted cells remain unclear. To assess cell fate in vivo, hexadecyl-4-[18F]fluorobenzoate (18F-HFB) cell labeling was evaluated for tracking human circulating progenitor cells (CPCs) with positron emission tomography (PET) and was compared to the commonly used 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) labeling method in a rat myocardial infarction model. CPCs were labeled with 18F-HFB or 18F-FDG ex vivo under the same conditions. 18F-HFB cell-labeling efficiency (23.4 ± 7.5%) and stability (4 h, 88.4 ± 6.0%) were superior to 18F-FDG (7.6 ± 4.1% and 26.6 ± 6.1%, respectively; p < 0.05). Neither labeling approach significantly altered cell viability, phenotype or migration potential up to 24 h postlabeling. Two weeks after left anterior descending coronary artery ligation, rats received echo-guided intramyocardial injection in the infarct border zone with 18F-HFB-CPCs, 18F-FDG-CPCs, 18F-HFB, or 18F-FDG. Dynamic PET imaging of both 18F-HFB-CPCs and 18F-FDG-CPCs demonstrated that only 16–37% of the initial injection dose (ID) was retained in the injection site at 10 min postdelivery, and remaining activity fell significantly over the first 4 h posttransplantation. The 18F-HFB-CPC signal in the target area at 2 h (23.7 ± 14.7% ID/g) and 4 h (17.6 ± 13.3% ID/g) postinjection was greater than that of 18F-FDG-CPCs (5.4 ± 2.3% ID/g and 2.6 ± 0.7% ID/g, respectively; p < 0.05). Tissue biodistribution confirmed the higher radioactivity in the border zone of 18F-HFB-CPC rats. Immunostaining of heart tissue sections revealed no significant difference in cell retention between two labeled cell transplantation groups. Good correlation with biodistribution results was observed in the 18F-HFB-CPC rats ( r = 0.81, p < 0.05). Compared to 18F-FDG, labeling human CPCs with 18F-HFB provides a more efficient, stable, and accurate way to quantify the distribution of transplanted cells. 18F-HFB cell labeling with PET imaging offers a better modality to enhance our understanding of early retention, homing, and engraftment with cardiac cell therapy.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3