Macroporous Three-Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation

Author:

Pedraza Eileen12,Brady Ann-Christina13,Fraker Christopher A.12,Molano R. Damaris1,Sukert Steven1,Berman Dora M.13,Kenyon Norma S.1234,Pileggi Antonello1234,Ricordi Camillo1235,Stabler Cherie L.123

Affiliation:

1. Diabetes Research Institute, University of Miami, Miami, FL, USA

2. Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL, USA

3. DeWitt Daughtry Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA

4. Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA

5. Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA

Abstract

Clinical islet transplantation has demonstrated success in treating type 1 diabetes. A current limitation is the intrahepatic portal vein transplant site, which is prone to mechanical stress and inflammation. Transplantation of pancreatic islets into alternative sites is preferable, but challenging, as it may require a three-dimensional vehicle to confer mechanical protection and to confine islets to a well-defined, retrievable space where islet neovascularization can occur. We have fabricated biostable, macroporous scaffolds from poly(dimethylsiloxane) (PDMS) and investigated islet retention and distribution, metabolic function, and glucose-dependent insulin secretion within these scaffolds. Islets from multiple sources, including rodents, nonhuman primates, and humans, were tested in vitro. We observed high islet retention and distribution within PDMS scaffolds, with retention of small islets (<100 μm) improved through the postloading addition of fibrin gel. Islets loaded within PDMS scaffolds exhibited viability and function comparable to standard culture conditions when incubated under normal oxygen tensions, but displayed improved viability compared to standard two-dimensional culture controls under low oxygen tensions. In vivo efficacy of scaffolds to support islet grafts was evaluated after transplantation in the omental pouch of chemically induced diabetic syngeneic rats, which promptly achieved normoglycemia. Collectively, these results are promising in that they indicate the potential for transplanting islets into a clinically relevant, extrahepatic site that provides spatial distribution of islets as well as intradevice vascularization.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3