Improvement of Pig Islet Function by In Vivo Pancreatic Tissue Remodeling: A “Human-Like” Pig Islet Structure with Streptozotocin Treatment

Author:

Vériter Sophie1,Aouassar Najima2,Beaurin Gwen1,Goebbels Rose-Marie2,Gianello Pierre1,Dufrane Denis2

Affiliation:

1. Pôle de Chirurgie Expérimentale et Transplantation, Laboratory of Experimental Surgery, Université Catholique de Louvain, Secteur des Sciences de la Santé, Brussels, Belgium

2. Endocrine Cell Therapy Unit, Center of Tissular and Cellular Therapy, St. Luc Hospital, Brussels, Belgium

Abstract

Pig islets demonstrate significantly lower insulin secretion after glucose stimulation than human islets (stimulation index of ~12 vs. 2 for glucose 1 and 15 mM, respectively) due to a major difference in β- and α-cell composition in islets (60% and 25% in humans and 90% and 8% in pigs, respectively). This leads to a lower rise in 3′,5′-cyclic adenosine monophosphate (cAMP) in pig β-cells. Since glucagon is the major hormonal effector of cAMP in β-cells, we modified pig islet structure in vivo to increase the proportion of α-cells per islet and to improve insulin secretion. Selected doses (0, 30, 50, 75, and 100 mg/kg) of streptozotocin (STZ) were intravenously injected in 32 young pigs to assess pancreatic (insulin and glucagon) hormone levels, islet remodeling (histomorphometry for α- and β-cell proportions), and insulin and glucagon secretion in isolated islets. Endocrine structure and hormonal content of pig islets were compared with those of human islets. The dose of STZ was significantly correlated with reductions in pancreatic insulin content ( p < 0.05, r2 = 0.77) and the proportion of β-cells ( p < 0.05, r2 = 0.88). A maximum of 50 mg/kg STZ was required for optimal structure remodeling, with an increased proportion of α-cells per islet (26% vs. 48% α-cells per islet for STZ <50 mg/kg vs. >75 mg/kg; p < 0.05) without β-cell dysfunction. Three months after STZ treatment (30/50 mg/kg STZ), pig islets were isolated and compared with isolated control islets (0 mg/kg STZ). Isolated islets from STZ-treated (30/50 mg/kg) pigs had a higher proportion of α-cells than those from control animals (32.0% vs. 9.6%, respectively, p < 0.05). After in vitro stimulation, isolated islets from STZ-treated pigs demonstrated significantly higher glucagon content (65.4 vs. 21.0 ng/ml, p < 0.05) and insulin release (144 μU/ml) than nontreated islets (59 μU/ml, p < 0.05), respectively. Low-dose STZ (<50 mg/kg) can modify the structure of pig islets in vivo and improve insulin secretion after isolation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From insulin replacement to bioengineered, encapsulated organoids;Biomaterials for Organ and Tissue Regeneration;2020

2. Le pancréas bioartificiel : du mythe à la réalité clinique;Bulletin de l'Académie Nationale de Médecine;2017-09

3. Gene Editing, Gene Therapy, and Cell Xenotransplantation: Cell Transplantation Across Species;Current Transplantation Reports;2017-07-21

4. Recent Progress in Xenotransplantation, with Emphasis on Virological Safety;Annals of Transplantation;2016-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3