Seeding of Endothelial Cells on the Luminal Surface of a Sheet Model of Cold-Stored (at 4°C) Sheep Carotid Arteries

Author:

Smardencas Arthur1,Parkington Helena C.2

Affiliation:

1. Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia

2. Department of Physiology, Monash University, Clayton, Victoria, Australia

Abstract

Cold-stored arteries are biomaterials that potentially represent an abundant “off-the-shelf” source of vascular grafts for use in vascular surgery. One of the keys to reestablishing the antithrombogenic endothelial cell (EC) lining of cold-stored arterial grafts is to maximize the number of ECs that attach following seeding. In this study, the cold-stored sheep carotid artery is used as a substrate to determine the conditions that maximize EC adherence following seeding. The effect of serum concentration, duration of seeding incubation, seeding density, and period of cold storage on attachment of ECs following seeding of 4-week cold-stored sheep carotid arteries ( n = 5 arteries), 8-week cold-stored sheep carotid arteries ( n = 5 arteries), and 12-week cold-stored sheep carotid arteries ( n = 5 arteries) was examined. Three experiments (serum concentration, time of incubation, and seeding density) were conducted to determine the conditions that maximized the number of cultured sheep carotid artery ECs that attached to cold-stored sheep carotid artery following seeding. A flat sheet model was used. Serum concentration (0%, 10%, 20%, and 30%) in the seeding suspension did not have a significant effect on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. Time of seeding incubation (30, 60, and 90 min) did not have a significant effect on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. Seeding density (500,000 cells/ml, 1,000,000 cells/ml, and 2,000,000 cells/ml) had a significant effect ( p = 0.036) on overall EC adherence on 4-, 8-, and 12-week cold-stored arteries. The period of cold storage (4, 8, and 12 weeks) of the artery had a significant effect ( p = 0.002, p < 0.0001, p < 0.0001 in serum, time, and seeding density experiments, respectively) on overall EC adherence following seeding. Pairwise comparisons of EC adherence revealed the following. In the serum experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 8-week cold-stored arteries ( p = 0.003) and 12-week cold-stored arteries ( p = 0.002). This effect was due largely to the significant difference between EC adherence on 4-week and 8-week cold-stored arteries ( p = 0.0002) and between EC adherence on 4-week and 12-week cold-stored arteries ( p = 0.0091) at 20% serum. In the time experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 12-week cold-stored arteries ( p < 0.0001). In the seeding density experiment, EC adherence on 4-week cold-stored arteries was significantly greater than on 8-week cold-stored arteries ( p < 0.0001) and 12-week cold-stored arteries ( p < 0.0001). In the same experiment, EC adherence following seeding at a density of 1,000,000 cells/ml and 2,000,000 cells/ml was significantly greater ( p = 0.03 and p = 0.02, respectively) than EC adherence following seeding at a density of 500,000 cells/ml. Thus, it was determined that 4-week cold-stored arteries were superior to 8- and 12-week cold-stored arteries in terms of the number of ECs that adhered. It was also determined that a seeding density of 1,000,000 or 2,000,000 cells/ml was superior to a seeding density of 500,000 cells/ml in terms of producing maximal EC attachment. The ideal conditions, from those examined, for maximizing EC attachment to cold-stored arteries were 4 weeks of cold storage, a serum concentration of 20%, a seeding density of 2,000,000 cells/ml, and a duration of incubation of 30–90 min.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3