Detecting Latent Classes in Tourism Data Through Response-Based Unit Segmentation (REBUS) in Pls-Sem

Author:

Assaker Guy,Hallak Rob

Abstract

This research note describes Response-Based Unit Segmentation (REBUS), a “latent class detection” technique used in partial least squares–structural equation modeling (PLS-SEM) to examine data heterogeneity. The research note is presented in two parts: Part A presents an overview of REBUS, including its development, algorithm, and its primary functions. Part B demonstrates the application of REBUS in examining a validated tourism model of destination image, satisfaction, and destination loyalty. The example shows how REBUS is used to examine variances in a structural equation model, to detect “classes,” and to profile and understand the heterogeneous groups in an SEM context. REBUS is powerful in uncovering variances and possible moderators in structural models, especially when the data are cross-sectional, heterogeneous, and multivariate nonnormal. Finally, the research note demonstrates how REBUS detects classes in models with higher order (multidimensional) constructs, which are often the case in tourism research.

Publisher

Cognizant, LLC

Subject

Tourism, Leisure and Hospitality Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3