Changes in DNA Damage Repair Gene Expression and Cell Cycle Gene Expression Do Not Explain Radioresistance in Tamoxifen-Resistant Breast Cancer

Author:

Post Annemarie E. M.1,Bussink Johan1,Sweep Fred C. G. J.2,Span Paul N.1

Affiliation:

1. Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands

2. Radboud University Medical Center, Department of Laboratory MedicineNijmegenThe Netherlands

Abstract

Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.

Publisher

Cognizant, LLC

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3