Wound Healing in the Biliary Tree of Liver Allografts

Author:

Demetris A. J.12,Fontes Paulo23,Lunz John G.12,Specht Susan12,Murase Noriko13,Marcos Amadeo13

Affiliation:

1. University of Pittsburgh Medical Center, Pittsburgh, PA, USA

2. Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

3. Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Abstract

An increasing need for liver transplantation requires evaluation and triage of organs harvested from “extended criteria” donors. Although there is currently no widely accepted definition, most would agree that “extended criteria” includes organs donated by individuals that are old (>65 years), obese, infected with HBV or HCV, non-heart beating (NHBD), or had an unstable blood pressure before harvesting or the organ experienced a long cold ischemic time. These organs carry a statistical risk of dysfunction early after transplantation, but in the majority of recipients, hepatic parenchymal function recovers. Later, however, a small but significant percentage of extended criteria donors develop biliary strictures within several months after transplantation. The strictures occur primarily because of preservation injury that leads to “ischemic cholangitis” or deep wounding of the bile duct wall. Subsequent partial wound healing and wound contraction, but failed restitution of the biliary epithelial cell (BEC) lining, result in biliary tract strictures that cause progressive biliary fibrosis, increased morbidity, and decreased organ half-life. Better understanding of the pathophysiologic mechanisms that lead to biliary strictures in extended criteria donors provides an ideal proving ground for regenerative medicine; it also can provide insights into other diseases, such as extrahepatic biliary atresia and primary sclerosing cholangitis, that likely share certain pathogenic mechanisms. Possible points of therapeutic intervention include limiting cold and warm ischemic times, donor and/or donor organ treatment, ex vivo, to minimize the ischemic/preservation injury, maximize blood flow after transplantation, promote BEC wound healing, and limit myofibroblasts activation and proliferation in the bile duct wall. The pathobiology of biliary wound healing and therapeutic potential of interleukin-6 (IL-6) are highlighted.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3