Evaluation of Surgical Techniques for Neuronal Cell Transplantation Used in Patients with Stroke

Author:

Kondziolka Douglas1,Steinberg Gary K.2,Cullen Sean B.3,Mcgrogan Michael3

Affiliation:

1. Department of Neurological Surgery, University of Pittsburgh and the McGowan Institute for Regenerative Medicine, Pittsburgh, PA

2. Department of Neurosurgery, Stanford University, Stanford, CA

3. Layton BioScience, Inc., Sunnyvale, CA

Abstract

Transplantation of cultured neuronal cells was performed in two human clinical trials after safety and efficacy was demonstrated in animal models of stroke. The studies tested the utility of human neuronal cellular transplantation into and around the small stroke volume. We developed a stereotactic surgical technique for cell delivery and evaluated that method in 26 patients with basal ganglia region motor stroke. Human neuronal cells (hNT cells; LBS neurons) were delivered frozen then thawed and formulated on the morning of surgery. Patients in a first trial received 2 or 6 million cells in three or nine implants, and in a second trial, 5 or 10 million in 25 implants. A novel cell delivery cannula was designed, manufactured, tested, and used in surgery. Immediate postoperative CT scans and later serial MR scans were used to evaluate the surgical site. Tests on the cell implantation cannula showed that the cells were not damaged and remained viable after injection. All patients underwent uncomplicated surgeries. Cells could be implanted within a 2-h period, maintaining viability of the preparation. Serial evaluations (maximum 5 years) showed no cell-related adverse serologic or imaging-defined effects. One patient had burr hole drainage of an asymptomatic chronic subdural hematoma. Human neuronal cells can be produced in culture and implanted stereotactically into the brains of patients with stroke. Surgical cell delivery did not lead to new neurological deficits, and imaging studies showed no adverse effects. The cannula used allowed precise injection of the clinical cell dose within a time period that maintained cell viability.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Tolerance-Induced Preconditioning on Mitochondrial Biogenesis in Undifferentiated and Differentiated Neuronal Cells;Frontiers in Bioscience-Landmark;2022-04-01

2. Are We Ready for Cell Therapy to Treat Stroke?;Frontiers in Cell and Developmental Biology;2021-06-23

3. Stem Cell Treatment for Ischemic Stroke Recovery;Seminars in Neurology;2021-01-27

4. Clinical neurorestorative cell therapies for stroke;Nanomedicine and Neuroprotection in Brain Diseases;2021

5. Stem Cell Delivery Techniques for Stroke and Peripheral Artery Disease;Stem Cell Therapy for Vascular Diseases;2020-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3