Efficacy of a Larger Version of the Hybrid Artificial Liver Support System Using a Polyurethane Foam/Spheroid Packed-Bed Module in a Warm Ischemic Liver Failure Pig Model for Preclinical Experiments

Author:

Yamashita Yo-Ichi1,Shimada Mitsuo1,Tsujita Eiji1,Shirabe Ken2,Ijima Hiroyuki1,Nakazawa Kohji2,Sakiyama Ryoichi2,Fukuda Junji2,Funatsu Kazumori2,Sugimachi Keizo1

Affiliation:

1. Department of Surgery and Science, Graduate School of Medical Sciences

2. Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan

Abstract

We have reported the usefulness of a polyurethane foam packed-bed culture system of hepatocyte spheroids as a hybrid artificial liver support system (PUF-HALSS). The aim of this study was to evaluate in detail the efficacy in serum parameters regarding the liver function of a larger version of the PUF-HALSS containing 2 × 1010 porcine hepatocytes for clinical use in warm ischemic liver failure pigs. Warm ischemic liver failure pigs weighing 25 kg were divided into two groups: (1) a control group (n = 3), in which each pig was attached to a PUF-HALSS without hepatocytes, and (2) a HALSS group (n = 3), in which each pig was attached to a PUF-HALSS. In the HALSS group, the increase of blood ammonia was completely suppressed and blood lactate levels were significantly suppressed. The Fisher's ratio was better maintained, and the increase of total bile acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid was significantly suppressed in the HALSS group. Serum creatinine levels were significantly lower, and blood glucose levels were significantly higher in the HALSS group. Serum levels of tumor necrosis factor- a were not elevated in either group. In conclusion, the larger version of the PUF-HALSS demonstrated many advantages as a liver support system in warm ischemic liver failure pigs.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3