One-Step Induction of Neurons from Mouse Embryonic Stem Cells in Serum-Free Media Containing Vitamin B12 and Heparin

Author:

Yamazoe Hironori1,Kobori Masato2,Murakami Yoshinobu1,Yano Keiichi2,Satoh Mitsuo2,Mizuseki Kenji3,Sasai Yoshiki3,Iwata Hiroo1

Affiliation:

1. Department of Reparative Materials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan

2. Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahimachi, Machida, Tokyo 194-8533, Japan

3. Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan

Abstract

We present a simple method for neural cell fate specification directly from mouse embryonic stem cells (ES cells) in serum-free conditions in the absence of embryoid body formation. Dissociated ES cells were cultured in serum-free media supplemented with vitamin B12 and heparin, but without any expensive cytokines. After 14 days in culture, β-tubulin type III (TuJ1) and tyrosine hydroxylase (TH)-positive colonies were detected by immunocytochemical examinations. In addition, specific gene analyses by RT-PCR demonstrated expression of an early central nerve system, mature neuron, and midbrain dopaminergic neuron-specific molecules (i.e., nestin, middle molecular mass neurofilament protein, Nurr1, and TH, respectively). Dopamine was also detected in the culture media by reverse-phase HPLC analysis. These facts indicate that addition of vitamin B12/heparin to serum-free culture media induced neurons from ES cells, which included cells that released dopamine. Other supplements, such as putrescine, biotin, and Fe2+, could not induce neurons from ES cells by themselves, but produced synergistic effects with vitamin B12/heparin. The rate of TuJ1+/TH+ colony formation was increased threefold and the amounts of dopamine released increased 1.5fold by the addition of a mixture of putrescine, biotin, and Fe2+ to vitamin B12/heparin culture media. Our method is a simple tool to differentiate ES cells to dopaminergic neurons for the preparation of dopamine-releasing cells for the cell transplantation therapy of Parkinson's disease. In addition, this method can facilitate the discovery of soluble factors and genes that can aid in the induction of the ES cell to its neural fate.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3