Tissue-Engineered Pancreatic Islets: Culturing Rat Islets in the Chitosan Sponge

Author:

Cui Wanxing1,Kim Do-Hoon2,Imamura Masayuki1,Hyon Suong-Hyu2,Inoue Kazutomo2

Affiliation:

1. Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan

2. Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan

Abstract

Subcutaneous islet transplantation has become an attractive modality. With development of tissue-engineering techniques, it is possible to rectify the disadvantage of poor blood supply in the subcutaneous site by reconstruction of the capillary network. According to reports, the Chitosan sponge (CS) could be used for reconstruction of in vitro capillary-like network and could be used in artificial skin equivalent. In this study, we cultured the islets in CS for future application. CSs, having 200–500 μm pore size, were prepared by freeze-drying method. Rat islets were isolated from the pancreas of Lewis rats (10 weeks old, 280–300 g, male) by collagenase digestion followed by discontinuous dextran gradient centrifugation method. Each 20 islets were seeded equally into the CSs and were cultured for 62 days with various culture media such as RPMI-1640, Dulbecco's modified Eagle's medium (DMEM), and Eagle's MEM. They contained 10% fetal bovine serum (FBS) and 5 ml/L antibiotic-antimycotic mixed stock solution in the culture dishes. Insulin concentration both inside and outside of the islet-seeded CS was measured during culture. Changes in the morphology of islets were also observed in this study. Freshly isolated islets had a loose appearance with an irregular border, and most were seen as a single islet. Occasionally a cluster, consisting of 2–4 islets ranging mainly from 150 to 250 μm in diameter, was observed. Islets cultured in the CSs in different culture media retained initial morphology, which had well-delineated smooth borders for at least 53 days. The insulin release behavior of islets cultured in the CS showed constant secretory capacities for 49 days. After that they exhibited a rapid and definitive decline from the initial insulin release. Until this stage, insulin concentration in the CS was well maintained. The properties were dependent on culture medium used and insulin diffusion released from islets. This experiment is a new study model for establishment of islet culture in a three-dimensional matrix. Also extension of this observation will provide new insights for islet transplantation at the subcutaneous site by a tissue-engineering approach.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel roundness error evaluation method for high-speed EMU train axles;Measurement Science and Technology;2023-11-07

2. Bioengineering, biomaterials, and β-cell replacement therapy;Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas;2020

3. Scaffolds for pancreatic tissue engineering;Handbook of Tissue Engineering Scaffolds: Volume Two;2019

4. Textile-based scaffolds for tissue engineering;Advanced Textiles for Wound Care;2019

5. Preparation, characterization and in vitro release study of drug-loaded sodium carboxy-methylcellulose/chitosan composite sponge;PLOS ONE;2018-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3