Cell Therapy for Diabetes Mellitus

Author:

Kobayashi Naoya1

Affiliation:

1. Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700–8558, Japan

Abstract

The number of diabetic patients in the world is increasing in recent years and the prevention of diabetes mellitus is therefore one of the urgent medical issues. Exogenous insulin is used for the control of blood glucose in diabetic patients; however, hypoglycemic episodes are unavoidable. Over the last several decades, islet transplantation has been developed as a promising method to achieve strict control of blood glucose and a potential cure for type 1 diabetes. However, due to the shortage of donor pancreata, alternative sources of islets have been sought through the generation of beta cells from stem cells, use of porcine islets, and beta cell expansion with growth factors. However, differentiation and expansion of embryonic and pancreatic stem cells and expansion of differentiated beta cells in vitro is limited. Expansion of primary beta cells by growth factors is also hampered by the senescence of the cells. Thus, we focused on establishing a human pancreatic beta cell line that is functionally equivalent to primary beta cells and can yield large amounts of cells for transplantation. Using Cre/loxP-based reversible immortalization, we constructed a reversibly immortalized pancreatic beta cell clone (NAKT-15). The cells may overcome the limitation of primary pancreatic beta cells for transplantation to control type 1 diabetes. In order to avoid the use of immunosuppressive agents, we are currently engaged in developing an implantable bag-type bioartificial pancreas. In this article, I discuss the hurdles of the current therapy for diabetes and introduce the possible future treatment of diabetes.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3