Endothelial Cell Preservation at 10°C Minimizes Catalytic Iron, Oxidative Stress, and Cold-Induced Injury

Author:

Zieger Michael A. J.12,Gupta Mahesh P.1

Affiliation:

1. Methodist Research Institute, Clarian Health Partners, Inc., Indianapolis, IN, USA

2. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

Abstract

There is growing evidence that oxidative stress plays an important role in mediating the injury induced by hypothermia during the preservation of cells and tissues for clinical or research use. In cardiovascular allografts, endothelial cell loss or injury may lead to impaired control of vascular permeability and tone, thrombosis, and inflammation. We hypothesized that hypothermia-induced damage to the endothelium is linked to increases in intracellular catalytic iron pools and oxidative stress. In this study, bovine aortic endothelial cells and cell culture methods were used to model the response of the endothelium of cardiovascular tissues to hypothermia. Confluent cells were stored at 0°C to 25°C and cell damage was measured by lipid peroxidation (LPO) and lactate dehydrogenase release. Varying the bleomycin-detectible iron (BDI) in cells modulated cold-induced LPO and cell injury. In untreated cells, injury was highest at 0°C and a minimum at 10°C. A similar temperature-dependent trend was found in BDI levels and cell plating efficiencies. Arrhenius plots of cell killing and iron accumulation rates showed biphasic temperature dependence, with minima at 10°C and matching activation energies above and below 10°C. These findings imply that the mechanisms underlying the hypothermic increase in catalytic iron, oxidative stress, and cell killing are the same and that preservation of the endothelium may be optimized at temperatures above those routinely used.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3