Bridging Nigrostriatal Pathway with Fibroblast Growth Factor-Primed Peripheral Nerves and Fetal Ventral Mesencephalon Transplant Recuperates from Deficits in Parkinsonian Rats

Author:

Chiang Yung-Hsiao1,Lin Shinn-Zong2,Zhou Feng C.3

Affiliation:

1. Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

2. Tzu-Chi General Hospital, Buddist Tzu-Chi University, Hua-Lien, Taiwan

3. Department of Anatomy and Cell Biology, Paul Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN, USA

Abstract

Previous studies have indicated that the nigrostriatal dopaminergic (DA) pathway can be reconstructed in hemiparkinsonian rats with a bridge transplantation technique involving fetal ventral mesencephalic transplants and glial cell line-derived neurotrophic factor. In this study, we examined if the nigrostriatal pathway can be restored by combining peripheral nervous tissue with the fetal ventral mesencephalon transplants. Adult rats were injected with 6-hydroxydopamine into left median forebrain bundle. Those with marked rotational behavior, which has been previously shown to indicate complete DA dennervtion, were used for transplant treatments. One month after the lesion, fetal ventral mesencephalic cells were transplanted into the nigral region followed by nigral-striatal grafting of peripheral nerves as a bridge. The bridging nerves (sciatic or intercostals) were pretreated with basic fibrous growth factor (nerve+bFGF+) or Hank's saline (nerve+bFGF-). We found that (a) animals receiving transplants of VM and bFGF+ nerve had a reduction in rotational behavior; (b) animals receiving bFGF- nerve bridge only had a partial improvement in rotation. Reinnervation of tyrosine hydroxylase (TH)-immunoreactive (ir) fibers into the striatum was found in both of the above groups with more innervation in the former than in the latter. No TH-ir fibers in lesioned striatum or reduction in rotational behavior were found in animals receiving VM only, or VM plus bFGF. Taken together, our data indicate that peripheral nerve, with the aid of bFGF, greatly facilitates the reconstitution of the TH pathway from nigra to striatum and improves motor function in hemiparkinsonian rats.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3