Development of a Hydroxyapatite/Collagen Nanocomposite as a Medical Device

Author:

Itoh Soichiro1,Kikuchi Masanori2,Koyama Yoshihisa3,Takakuda Kazuo3,Shinomiya Kenichi4,Tanaka Junzo2

Affiliation:

1. Division of Molecular Tissue Engineering, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan

2. Division of Biomaterials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

3. Department of Biomechanical Engineering, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan

4. Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan

Abstract

The effect of cross-linking of a hydroxyapatite/collagen (HA/Col) nanocomposite, in which HA nanocrystals and collagen fibers are aligned like natural bone by a self-organization mechanism between HA and collagen in vitro, on mechanical properties was examined. The influence of degree of cross-linking, as well as rhBMP-2 preadsorption to the composite on the substitution pattern and rate with bone, was examined. In Experiment 1, anterior fusion was carried out at the C3–C4 vertebrae on 10 dogs and they were implanted as follows: without cross-linking and without adsorbed rhBMP-2 (three dogs), with cross-linking and without adsorbed rhBMP-2 (three dogs), without cross-linking and with adsorbed rhBMP-2 (two dogs), and with cross-linking and adsorbed rhBMP-2 (two dogs). Implants were removed from each dog for histology determinations after 12, 16, and 24 weeks in the non-rhBMP-treated groups, and after 16 and 24 weeks in the rhBMP-treated groups. In Experiment 2, the HA/Col composites with cross-linking and both with and without rhBMP-2 pretreatment were implanted into a bone defect of 20 mm made in the central part of tibiae in dogs (N = 3 in each group). As a control, bone defects of 20 mm remained without implantation (N = 3). The dogs were allowed to walk using an Ilizarov extra skeletal fixator. The implants were removed after 12, 16, and 24 weeks from one dog in each group. The cross-linking of the HA/Col composite was effective in controlling both the mechanical strength and bioresorbability. A “self-organization process” on the HA/Col implant surface resulted in the formation of bone remodeling units in and around the implant. Radiographic and histological findings suggest that a combined treatment of cross-linking of the HA/Col composite with preadsorption of rhBMP-2 molecules may be a very suitable replacement of existing ceramic systems in the anterior fusion of the cervical spine, as well as inlay grafting of bone defects in weight-bearing sites.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3