Affiliation:
1. Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
Abstract
Rapid and efficient resurfacing of various skin defects by autologous keratinocyte transplantation is significant in skin wound healing. We developed a novel bioreactor microcarrier cell culture system (Bio-MCCS) to produce autologous human keratinocytes on a large scale. In this Bio-MCCS we used porcine gelatin microbeads as microcarriers for autolgous keratinocytes and spinning bottles as fermentation tanks. First, the microbeads were modified by culturing them with autologous dermal fibroblasts that were subsequently killed when they proliferated to confluence on the microbeads. We then performed the Bio-MCCS by expanding ketatinocytes on the microbeads in spinning bottles at 37°C, 5% CO2. Our results showed that keratinocytes rapidly attached to and actively proliferated on the modified microbeads in the Bio-MCCS, achieving high cell densities on the modified microbeads (MTT assay and PI staining). Keratinocytes cultured on the modified microbeads in the Bio-MCCS remained proliferating potentials as shown by positive PCNA staining and BrdU labeling. In contrast, keratinocytes cultured on nonmodified microbeads in the Bio-MCCS proliferated slowly, rapidly ceased to proliferate, and finally dislodged from the microbeads. When removed from the Bio-MCCS and cultured under static conditions, keratinocytes were able to leave the modified microbeads and formed a multilayered epidermal equivalent on the culture surfaces. While stored at room temperature, keratinocytes remained at higher viabilities on the modified microbeads when compared to those on nonmodified microbeads. The achievement of high yields of proliferating autologous keratinocytes by this Bio-MCCS offers a practical potential of resurfacing various skin defects by direct administration of autologous keratinocyte microbeads on various skin defects.
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献