Acute Rejection of White Adipose Tissue Allograft

Author:

Ablamunits Vitaly12,Goldstein Alan J.13,Tovbina Marina H.12,Gaetz Harold P.4,Klebanov Simon12

Affiliation:

1. Obesity Research Center, St. Luke's Hospital, New York, NY, USA

2. Department of Medicine, Columbia University, New York, NY, USA

3. Cornell University, Ithaca, NY, USA

4. Department of Pathology, Roosevelt Hospital, New York, NY, USA

Abstract

White adipose tissue (WAT) transplantation, although widely used in humans, has been done for cosmetic and reconstructive purposes only. Accumulating evidence indicates, however, that WAT is an important endocrine organ and, therefore, WAT transplantation may become valuable as a replacement therapy for a number of hereditary human diseases. Because the most readily available source for such transplantations would be allogeneic tissue, the mechanisms involved in the rejection of WAT allograft should be explored. We have established a model in which leptin-producing allogeneic WAT is transplanted into leptin-deficient ob/ob mice. Because ob/ob mice are obese, hyperphagic, and hypothermic, WAT allograft function is monitored as the reversal of this leptin-deficient phenotype. Here we report that allografted WAT is primarily nonfunctional. However, when WAT is transplanted into immunodeficient (Rag1–/–) ob/ob mice, or into ob/ob mice depleted of T cells by anti-CD3 antibody, a long-term graft survival is achieved as indicated by the reversal of hyperphagia, weight loss, and normalization of body temperature. The symptoms of leptin deficiency rapidly recur when normal spleen cells of the recipient type are injected, or when the antibody treatment is terminated. In contrast, selective depletion of either CD4+ or CD8+ cells alone does not prevent WAT allograft rejection. Similarly, WAT allografts that do not express MHC class I or class II molecules are rapidly rejected, suggesting that both CD4+ and CD8+ T cells may independently mediate WAT allograft rejection.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3