Human Umbilical Cord Blood Progenitor Cells are Attracted to Infarcted Myocardium and Significantly Reduce Myocardial Infarction Size

Author:

Henning Robert J.1,Burgos Jose D.1,Ondrovic Leo2,Sanberg Paul3,Balis John4,Morgan Michael B.4

Affiliation:

1. Department of Medicine, University of South Florida College of Medicine and the James A. Haley VA Hospital, Tampa, FL, USA

2. Department of Surgery, University of South Florida College of Medicine, Tampa, FL, USA

3. Department of Neuroscience, University of South Florida College of Medicine, Tampa, FL, USA

4. Department of Pathology, University of South Florida College of Medicine and the James A. Haley VA Hospital, Tampa, FL, USA

Abstract

We are investigating the effects of human umbilical cord blood mononuclear progenitor cells (HUCBC) for the treatment of acute myocardial infarction because human cord blood is a readily available and an abundant source of primitive cells that may be beneficial in myocardial repair. However, there is currently no scientific consensus on precisely when to inject stem/progenitor cells for the optimal treatment of acute myocardial infarction. We used an in vitro assay to determine the attraction of infarcted rat myocardium at 1, 2, 2.5, 3, 6, 12, 24, 48, and 96 h after left anterior descending coronary artery (LAD) occlusion from 45 rats for HUCBC in order to determine the optimal time to transplant HUCBC after myocardial infarction. Our assay is based on the migration of fluorescent DAPI-labeled HUCBC from wells in an upper chamber of a modified Boyden apparatus through a semiporous polycarbonate membrane into wells in a lower chamber that contain either normal or infarcted myocardium. DAPI-labeled HUCBC (100,000) were placed in each of the separate wells above the membrane that corresponded to normal or infarct homogenate in the lower wells. The greatest HUCBC migration to infarcted myocardium occurred at 2 h and 24 h after LAD occlusion in comparison with normal controls. A total of 76,331 ± 3384 HUCBC migrated to infarcted myocardium at 2 h and 69,911 ±2732 at 24 h after LAD occlusion (both p < 0.001) and significantly exceeded HUCBC migration to normal heart homogenate. The HUCBC migration remained greatest at 2 and 24 h after LAD occlusion when the number of migrated cells was adjusted for the size of each myocardial infarction. Injection of 106 HUCBC in saline into infarcted myocardium of non immunosuppressed rats within 2 h (n = 10) or at 24 h (n = 5) after LAD occlusion resulted in infarction sizes 1 month later of 6.4 ± 0.01% and 8.4 ± 0.02% of the total left ventricular muscle area, respectively, in comparison with infarction sizes of 24.5 ± 0.02% (n = 10) in infarcted rat hearts treated with only saline (p < 0.005). Acute myocardial infarction in rats treated with only saline increased the myocardial concentration of tumor necrosis factor-α (TNF-α) from 6.9 ± 0.8% to 51.3 ± 4.6%, monocyte/macrophage chemoattractant protein (MCP-1) from 10.5 ± 1.1% to 39.2 ± 2.0%, monocyte inflammatory protein (MIP) from 10.6± 1.6% to 23.1 ± 1.5%, and interferon-? (INF-?) from 8.9 ± 0.3% to 25.0 ± 1.7% between 2 and 12 h after coronary occlusion in comparison with known controls (all p < 0.001). In contrast, the myocardial concentrations of these cytokines in rat hearts treated with HUCBC did not significantly change from the controls at 2, 6, 12, and 24 h after coronary occlusion. The present investigations suggest that infarcted myocardium significantly attracts HUCBC, that HUCBC can substantially reduce myocardial infarction size, and that HUCBC can limit the expression of TNF-α, MCP-1, MIP, and INF-? in acutely infarcted myocardium.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3