Long-Term Function of Cryopreserved Rat Hepatocytes in a Coculture System

Author:

Sugimachi Keishi1,Sosef Meindert N.1,Baust John M.1,Fowler Alex1,Tompkins Ronald G.1,Toner Mehmet1

Affiliation:

1. Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, MA 02114

Abstract

The goal of this study was to investigate postpreservation long-term function of cryopreserved primary rat hepatocytes using the hepatocyte/3T3-J2 fibroblast coculture system. The long-term function of thawed hepatocytes cocultured with fibroblasts was evaluated and compared with hepatocytes cultured without fibroblasts. Fresh isolated primary rat hepatocytes were frozen at a controlled rate (−1°C/min) up to −80°C, and then stored in liquid nitrogen for up to 90 days. Thawed hepatocytes were thereafter cocultured with 3T3-J2 murine fibroblasts and cocultivation was monitored for 14 days. The viability of fresh isolated hepatocytes was 91.4%, and that of cryopreserved hepatocytes was 82.1%. Cellular morphology and polarity, which were determined by the localization of actin filaments and connexin-32, were successfully maintained in cryopreserved hepatocytes following cryopreservation. Albumin and urea synthesis reached the maximum level and became stable after day 7 in coculture in both fresh and cryopreserved hepatocytes. Urea synthesis of cryopreserved hepatocytes was maintained 89.0% of nonfrozen fresh control, and albumin production of cryopreserved hepatocytes was 63.7% of control in coculture. Cytochrome P450 activity, which was measured by deethylation of ethoxyresorufin, was also maintained in cryopreserved hepatocytes at 88.6% of nonfrozen fresh control in coculture. The retention of synthetic and detoxification activities was verified to be well preserved during extended low-temperature storage (90 days). Both fresh control and cryopreserved hepatocytes cultured without fibroblast did not retain their synthetic and detoxification functions in long-term culture. These data illustrate that, through the utilization of our cryopreservation procedure, primary hepatocyte function was successfully maintained when placed into coculture configuration following thawing.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3