Comparison of Cooling Systems during Islet Purification

Author:

Swift Sue1,Kin Tatsuya1,Mirbolooki Mohammadreza1,Wilson Richard1,Lakey Jonathan R. T.1

Affiliation:

1. Clinical Islet Transplant Program, University of Alberta and Capital Health Authority, Edmonton, Alberta, Canada

Abstract

Islet isolation is a complex procedure that includes digestion and purification of pancreatic tissue. As we move towards clinical regulatory control and standardization, understanding of the detailed stages of the procedure have become increasingly important. Purification on a COBE 2991 density gradient allows human islets to be separated from a large volume of acinar tissue. Cooling the gradient and tissue is thought to be important to reduce metabolic activity but cooling systems for the gradient are expensive, with limited availability. In this study, the efficiency of cooling methods for the COBE 2991 cell separator has been investigated. The two cooling systems were: a) COBE 2991 modified internally to allow coolant (polyethylene glycol) from a chiller to circulate either side of the spindle and around the bowl (original system), and b) an air-cooled system using an air conditioner to blow cold air into the bowl from above (air cooler system). Cooling required 20 min for the original system and temperature was stabilized within 4–7°C. The air system cooled rapidly but was not stable. There was an increase in the temperature of the medium with using both systems during centrifugation because of heat generated by the COBE machine; however, the temperature of the medium after centrifugation with the air system was significantly higher than that with the original system (13.3 ± 0.2°C vs. 8.7 ± 0.7°C, p < 0.05). The original cooler system was found to be more efficient at reducing heat generated by the COBE machine than the air system. Further investigation of the importance of the recorded temperatures is required.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3