Long-Term Cell Survival and Hemodynamic Improvements after Neonatal Cardiomyocyte and Satellite Cell Transplantation into Healed Myocardial Cryoinfarcted Lesions in Rats

Author:

Huwer Hanno1,Winning Johannes1,Vollmar Brigitte2,Welter Cornelius3,Löhbach Christoph4,Menger Michael D.5,Schäfers Hans-Joachim1

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, University of Saarland, D-66421 Homburg/Saar, Germany

2. Department of Experimental Surgery, University of Rostock, D-18055 Rostock, Germany

3. Institute of Human Genetics, University of Saarland, D-66421 Homburg/Saar, Germany

4. Department of Biopharmaceutics and Pharmaceutical Technology, University of Saarland, D-66041 Saarbrücken, Germany

5. Institute for Clinical and Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany

Abstract

Cell engraftment is a new strategy for the repair of ischemic myocardial lesions. The hemodynamic effectiveness of this strategy, however, is not completely elucidated yet. In a rat model of cryothermia-induced myocardial dysfunction, we investigated whether syngeneic transplantation of neonatal cardiomyocytes or satellite cells is able to improve left ventricular performance. Myocardial infarction was induced in female Lewis rats by a standardized cryolesion to the obtuse margin of the left ventricle. After 4 weeks, 5 × 106 genetically male neonatal cardiomyocytes (n= 16) or satellite cells (n = 16) were engrafted into the myocardial scar. Sham-transplanted animals (n = 15) received injections with cell-free medium. Sham-operated animals (n = 15) served as controls. Left ventricular performance was analyzed 4 months after cell engraftment. Chimerism after this sex-mismatched transplantation was evaluated by detection of PCR-amplified DNA of the Y chromosome. The average heart weight of the infarcted animals significantly exceeded that of controls (p < 0.05). In sham-transplanted animals, mean aortic pressure, left ventricular systolic pressure, aortic flow (indicator of cardiac output), and left ventricular systolic reserve were significantly lower (p < 0.05) compared with sham-operated controls. This was associated with deterioration of ventricular diastolic function (maximal negative dP/dt, time constants of isovolumic relaxation; p < 0.05). Transplantation of satellite cells was found more effective than transplantation of neonatal cardiomyocytes, resulting in i) normalization of mean aortic pressure compared with sham-operated controls, and ii) significantly improved left ventricular systolic pressure and aortic flow (p < 0.05) compared with sham-transplanted animals. Left ventricular systolic reserve and diastolic function, however, were improved by neither satellite cell nor neonatal cardiomyocyte transplantation. Analysis of male genomic DNA revealed 3.98 ± 2.70 ng in hearts after neonatal cardiomyocyte engraftment and 6.16 ± 4.05 ng in hearts after satellite cell engraftment, representing approximately 103 viable engrafted cells per heart. Our study demonstrates i) long-term survival of both neonatal cardiomyocytes and satellite cells after transplantation into cryoinfarcted rat hearts, ii) slight superiority of satellite cells over neonatal cardiomyocytes in improving global left ventricular pump performance, and iii) no effect of both transplant procedures on diastolic dysfunction.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3