The Pivotal Role of RhoA GTPase in the Molecular Signaling of Axon Growth Inhibition after CNS Injury and Targeted Therapeutic Strategies

Author:

Gross Robert E.1,Mei Qi1,Gutekunst Claire-Anne1,Torre Enrique1

Affiliation:

1. Department of Neurosurgery, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, USA

Abstract

The dogma that the adult central nervous system (CNS) is nonpermissive to axonal regeneration is beginning to fall in the face of increased understanding of the molecular and cellular biology of axon outgrowth. It is now appreciated that axon growth is regulated by a combination of extracellular factors related to the milieu of the developing or adult CNS and the presence of injury, and intracellular factors related to the “growth state” of the developing or regenerating neuron. Several critical points of convergence within the developing or regenerating neuron for mediating intracellular cell signaling effects on the growth cone cytoskeleton have been identified, and their modulation has produced marked increases in axon outgrowth within the “nonpermissive” milieu of the adult injured CNS. One such critical convergence point is the small GTPase RhoA, which integrates signaling events produced by both myelin-associated inhibitors (e.g., NogoA) and astroglial-derived inhibitors (chondroitin sulfate proteoglycans) and regulates the activity of downstream effectors that modulate cytoskeletal dynamics within the growth cone mediating axon outgrowth or retraction. Inhibition of RhoA has been associated with increased outgrowth on nonpermissive substrates in vitro and increased axon regeneration in vivo. We are developing lentiviral vectors that modulate RhoA activity, allowing more long-term expression than is possible with current approaches. These vectors may be useful in regenerative strategies for spinal cord injury, brain injury, and neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and Huntington's disease.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3