Neural Progenitor Cells Derived from the Adult Rat Subventricular Zone: Characterization and Transplantation

Author:

Chen Kevin1,Hughes Stephanie M.1,Connor Bronwen1

Affiliation:

1. Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

Abstract

In order to fully characterize and determine the therapeutic potential of adult neural progenitor cells (NPCs), it is important to be able to isolate and study NPCs from animals such as rats, in which there are existing models of brain injury and disease. The focus of this study was to characterize the cultivation, differentiation, and transplantation of adult rat NPCs isolated from the subventricular zone of the lateral ventricles. We examined strategies for cell purification using a Percoll density gradient, and cell expansion using a range of maintenance medium and plating densities. Purification by Percoll gradient enriched a population of cells expressing nestin and SOX2, but resulted in a significant reduction in neurosphere generation. Culturing adult rat NPCs in Neurobasal-A media and plating at 200,000 cell/ml resulted in a higher percentage of cells surviving to generate neurospheres compared to culture in DMEM/F12 or NS-A media. On induction of differentiation, adult rat NPCs were capable of generating neurons, astrocytes, and oligodendrocytes in vitro that survived for up to 8 weeks, demonstrating multipotentiality of these cells. In addition, a population of cells continued to proliferate during the initial phase of differentiation, suggesting the presence of two populations of NPCs during differentiation. Cultured adult rat NPCs also survived and differentiated into astrocytes 6 weeks after transplantation into the striatum of the normal adult rat brain. In conclusion, we have optimized techniques that allow for the routine isolation, culture, and transplantation of multipotent NPCs derived from the adult rat SVZ.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3