Detection of Microbial Contamination during Human Islet Isolation

Author:

Kin Tatsuya1,Rosichuk Shawn1,Shapiro A. M. James1,Lakey Jonathan R. T.1

Affiliation:

1. Clinical Islet Transplant Program, University of Alberta and Capital Health Authority, Edmonton, Alberta, Canada

Abstract

Current good manufacturing practice (cGMP) islet processing facilities provide an ultraclean environment for the safe production of clinical grade islets for transplantation into immunosuppressed diabetic recipients. The objective of this study was to monitor the rate of microbial contamination in islet products after implementation of good manufacturing practice conditions. Fluid samples for microbial contamination were collected at the following steps: from the pancreas transport solution upon arrival of the organ (n = 157), after surface decontamination of the pancreas with antiseptic agents (n = 89), from islet supernatant at the end of the isolation (n = 104), and from islet supernatant as a final transplantable product after culture (n = 53). Bacterial, fungal, and mycoplasma cultures were conducted for 2, 2, and 3 weeks, respectively. Microbial contamination was detected in 31% of transport solution. The contamination was not associated with the presence of the duodenum during the preservation, cold ischemia time, or procurement team (local vs. distant). Surface decontamination of the pancreas resulted in clearance of 92% of the microbial contamination. Six preparations at the end of the isolation revealed microbial growth. All were de novo contamination during the processing. Fifty-three preparations that met our release criteria in terms of product sterility were transplanted into type 1 diabetic patients. In two instances, positive culture of the islet preparation was reported after transplantation had occurred. No patient showed any clinical findings suggestive of infection or any radiological abnormalities suggestive of abscess; a single dose of antibiotic coverage was given routinely to recipients prior to islet infusion. Although transport solution carries a high risk of microbial contamination, most contaminants become undetectable during islet processing. Microbial contamination in final products is rare, but de novo contamination still occurs during processing even under cGMP conditions.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3