Ultrastructural Characterization of Dissociated Embryonic Ventral Mesencephalic Tissue Treated with Neuroprotectants

Author:

Ahn Young Hwan,Emgård Mia,Brundin Patrik1

Affiliation:

1. Section for Neuronal Survival, Wallenberg Neuroscience Center, BMC A10, SE-221 84 Lund, Sweden

Abstract

Poor survival and differentiation of grafted dopamine neurons limits the application of clinical transplantation in Parkinson's disease. The survival of grafted dopamine neurons is only improved by a factor of 2–3 by adding neuroprotectants during tissue preparation. We used dye exclusion cell viability and electron microscopy to investigate the effects of the caspase inhibitor ac-YVAD-cmk and the lazaroid tirilazad mesylate on ultrastructural changes in dissociated embryonic mesencephalic cells. In addition, we examined whether the neuroprotectants selectively counteracted specific signs of neurodegeneration. Cell viability decreased significantly over time in both control and treated cell suspensions, but the number of viable cells remaining was significantly higher in tirilazad mesylate-treated cell suspensions. In control samples, the proportion of cells with an ultrastructure consistent with healthy cells decreased from 70%, immediately after dissociation, to 30% after 8 h of incubation. Similar changes were also observed in cell suspensions treated with neuroprotectants. Thus, the neuroprotectants examined did not block the development of specific morphological signs of neurodegeneration. However, when also taking into account that dead cells lysed and disappeared from each cell suspension with time, we found that the total number of remaining viable cells with healthy nuclear chromatin or intact membrane integrity was significantly higher in the tirilazad mesylate-treated group. The results indicate that tirilazad mesylate protects only a small subpopulation of embryonic mesencephalic cells from degeneration induced by mechanical trauma during tissue dissection and dissociation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3