Autotransplantation of Unmanipulated Bone Marrow into Scarred Myocardium is Safe and Enhances Cardiac Function in Humans

Author:

Galiñanes Manuel1,Loubani Mahmoud1,Davies Joan2,Chin Derek2,Pasi John3,Bell Peter R.4

Affiliation:

1. Department of Integrative Human Cardiovascular Physiology and Cardiac Surgery

2. Department of Cardiology

3. Division of Haematology

4. Department of Surgery, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK

Abstract

Stem cell transplants into damaged myocardium may have the potential to improve cardiac function. We investigated the safety of transplanting unmanipulated autologous bone marrow into infarcted myocardium of patients undergoing coronary bypass surgery and assessed its efficacy to improve cardiac function. Fourteen patients with one or more areas of transmural myocardial infarction were studied. Autologous bone marrow was obtained by sternal bone aspirate at the time of surgery, diluted in autologous serum at a ratio of 1:2, and then injected 1 cm apart into the mid-depth of the left ventricular scar. There were no deaths, no perioperative myocardial infarctions, and no significant ventricular arrhythmias. Dobutamine stress echocardiography demonstrated overall improvement in the global and regional left ventricular function 6 weeks and 10 months after surgery. Of 34 infarcted left ventricular segments, 11 were injected with bone marrow alone, 13 were revascularized with a bypass graft alone, and 10 received bone marrow transplantation and a bypass graft in combination. Only the left ventricle segmental wall motion score of the areas injected with bone marrow and receiving a bypass graft in combination improved at low dose and at peak dobutamine stress. These findings suggest that transplantation of unmanipulated autologous bone marrow into scar tissue of the human heart is safe and enhances cardiac function only when used in combination with myocardial revascularization. This benefit can be seen after 6 weeks of the bone marrow transplant and is maintained after 10 months of follow-up.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3