Adult Spinal Cord Stem/Progenitor Cells Transplanted as Neurospheres Preferentially Differentiate into Oligodendrocytes in the Adult Rat Spinal Cord

Author:

Mothe Andrea J.1,Kulbatski Iris1,Parr Ann1,Mohareb Michael1,Tator Charles H.1

Affiliation:

1. Toronto Western Research Institute and Krembil Neuroscience Centre, University of Toronto, Toronto, ON, Canada

Abstract

Neural stem/progenitor cells (NSPCs) capable of generating new neurons and glia reside in the adult mammalian spinal cord. Transplantation of NSPCs has therapeutic potential for spinal cord injury, although there is limited information on the ability of these cells to survive and differentiate in vivo. Neurospheres cultured from the periventricular region of the adult spinal cord contain NSPCs that are self-renewing and multipotent. We examined the survival, proliferation, migration, and differentiation of adult spinal cord NSPCs generated from green fluorescent protein (GFP) transgenic rats and transplanted into the intact spinal cord. The grafted GFP-expressing cells survived for at least 6 weeks in vivo and migrated from the injection site along the rostro-caudal axis of the spinal cord. Transplanted cells transiently proliferated following transplantation and approximately 17% of the GFP-positive cells were apoptotic at 1 day. Also, better survival was seen with NSPCs transplanted as neurospheres in comparison to NSPCs transplanted as dissociated cells. By 1 week posttransplantation, grafted cells primarily expressed an oligodendrocytic phenotype and only 2% differentiated into astrocytes. Approximately 75% versus 38% of the grafted cells differentiated into oligodendrocytes after transplantation into spinal white versus gray matter, respectively. This is the first report to examine the time course of cell survival, proliferation, apoptosis, and phenotypic differentiation of transplanted NSPSs in the spinal cord. This is also the first report to examine the differences between transplanted NSPCs grafted as neurospheres or dissociated cells, and to compare the differentiation potential after transplantation into spinal cord white versus gray matter.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3