Affiliation:
1. Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester MN, USA
2. Brami Biomedical, Inc., Minneapolis, MN, USA
Abstract
Cultivation of primary hepatocytes as spheroids creates an efficient three-dimensional model system for hepatic studies in vitro and as a cell source for a spheroid reservoir bioartificial liver. The mechanism of spheroid formation is poorly understood, as is an explanation for why normal, anchorage-dependent hepatocytes remain viable and do not undergo detachment-induced apoptosis, known as anoikis, when placed in suspension spheroid culture. The purpose of this study was to investigate the role of E-cadherin, a calcium-dependent cell adhesion molecule, in the formation and maintenance of hepatocyte spheroids. Hepatocyte spheroids were formed by a novel rocker technique and cultured in suspension for up to 24 h. The dependence of spheroid formation on E-cadherin and calcium was established using an E-cadherin blocking antibody and a calcium chelator. We found that inhibiting E-cadherin prevented cell–cell attachment and spheroid formation, and, surprisingly, E-cadherin inhibition led to hepatocyte death through a caspase-independent mechanism. In conclusion, E-cadherin is required for hepatocyte spheroid formation and may be responsible for protecting hepatocytes from a novel form of caspase-independent cell death.
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献