Embryonic Substantia Nigra Grafts Show Directional Outgrowth to Cografted Striatal Grafts and Potential for Pathway Reconstruction in Nonhuman Primate

Author:

Sladek J. R.1,Bjugstad K. B.1,Collier T. J.2,Bundock E. A.3,Blanchard B. C.1,Elsworth J. D.4,Roth R. H.4,Redmond D. E.5

Affiliation:

1. Department of Pediatrics, The University of Colorado School of Medicine, Aurora, CO, USA

2. Department of Neurology, University of Cincinnati School of Medicine, Cincinnati, OH, USA

3. Department of Pathology, University of Vermont School of Medicine, Burlington, VT, USA

4. Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA

5. Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA

Abstract

Transplantation of embryonic dopamine (DA) neurons has been tested as a therapy for Parkinson's disease. Most studies placed DA neurons into the striatum instead of the substantia nigra (SN). Reconstruction of this DA pathway could serve to establish a more favorable environment for control of DA release by grafted neurons. To test this we used cografts of striatum to stimulate growth of DA axons from embryonic SN that was implanted adjacent to the host SN in African green monkeys. Embryonic striatum was implanted at one of three progressive distances rostral to the SN. Immunohistochemical analysis revealed DA neuron survival and neuritic outgrowth from the SN grafts at 12–36 weeks after grafting. Each animal showed survival of substantial numbers of DA neurons. Most fibers that exited SN grafts coursed rostrally. Striatal grafts showed evidence of target-directed outgrowth and contained dense patterns of DA axons that could be traced from their origin in the SN grafts. A polarity existed for DA neurites that exited the grafts; that is, those seen caudal to the grafts did not appear to be organized into a directional outflow while those on the rostral side were arranged in linear profiles coursing toward the striatal grafts. Some TH fibers that reached the striatal grafts appeared to arise from the residual DA neurons of the SN. These findings suggest that grafted DA neurons can extend neurites toward a desired target over several millimeters through the brain stem and caudal diencephalon of the monkey brain, which favors the prospect of circuit reconstruction from grafted neurons placed into appropriate locations in their neural circuitry. Further study will assess the degree to which this approach can be used to restore motor balance in the nonhuman primate following neural transplantation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3