Beneficial Role of Pancreatic Microenvironment for Angiogenesis in Transplanted Pancreatic Islets

Author:

Lau Joey1,Kampf Caroline12,Mattsson Göran1,Nyqvist Daniel3,Köhler Martin3,Berggren Per-Olof3,Carlsson Per-Ola14

Affiliation:

1. Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

2. Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden

3. The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden

4. Department of Medical Sciences, Uppsala University, Uppsala, Sweden

Abstract

Pancreatic islets implanted heterotopically (i.e., into the kidney, spleen, or liver) become poorly revascularized following transplantation. We hypothesized that islets implanted into the pancreas would become better revascularized. Islets isolated from transgenic mice expressing enhanced yellow fluorescent protein (EYFP) in all somatic cells were cultured before they were implanted into the pancreas or beneath the renal capsule of athymic mice. Vascular density was evaluated in histological sections 1 month posttransplantation. EYFP was used as reporter for the transgene to identify the transplanted islets. Islet endothelial cells were visualized by staining with the lectin Bandeiraea simplicifolia (BS-1). Capillary numbers in intrapancreatically implanted islets were only slightly lower than those counted in endogenous islets, whereas islets implanted beneath the renal capsule had a markedly lower vascular density. In order to determine if this high graft vascular density at the intrapancreatic site reflected expansion of remnant donor endothelial cells or increased ingrowth of blood vessels from the host, also islets from Tie2-green fluorescent protein (GFP) mice (i.e., islets with fluorescent endothelial cells) were transplanted into the pancreas or beneath the renal capsule of athymic mice. These islet grafts revealed that the new vascular structures formed in the islet grafts contained very few GFP-positive cells, and thus mainly were of recipient origin. The reason(s) for the much better ingrowth of blood vessels at the intrapancreatic site merits further studies, because this may help us form strategies to overcome the barrier for ingrowth of host vessels also into islets in heterotopic implantation sites.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3