Cellular Epigenetic Modifications of Neural Stem Cell Differentiation

Author:

Singh Rabindra P.1,Shiue Kevin1,Schomberg Dominic1,Zhou Feng C.123

Affiliation:

1. Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA

2. Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA

3. Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA

Abstract

Emerging information indicates that epigenetic modification (i.e., histone code and DNA methylation) may be integral to the maintenance and differentiation of neural stem cells (NSCs), but their actual involvement has not yet been illustrated. In this study, we demonstrated the dynamic nature of epigenetic marks during the differentiation of quiescent adult rat NSCs in neurospheres. A subpopulation of OCT4+ NSCs in the neurosphere contained histone marks, trimethylated histone 3 on lysine 27 (3me-H3K27), 2me-H3K4, and acetylated H4 (Ac-H4). A major decrease of these marks was found prior to or during differentiation, and was further diminished or reprogrammed in diverse subpopulations of migrated NSCs expressing nestin or β-III-tubulin. The DNA methylation mark 5-methyl-cytosine (5-MeC), and DNA methyltransferase (DNMT) 1 and 3a expression also correlated to the state of differentiation; they were highly present in undifferentiated NSCs but downregulated in migrated populations. In contrast, DNA methyl-CpG-binding protein (MBD1) was low in undifferentiated NSCs in neurospheres, but highly appeared in differentiating NSCs. Furthermore, we found an outward translocation of DNA methylation marker 5-MeC, DNMT1, DNMT3a, and MBD1 in NSCs as differentiation began and proceeded; 5-MeC from homogeneous nucleus to peripheral nucleus, and DMNT1a and 3a from nuclear to cytoplasm, indicating chromatin remodeling. Treatment with DNA methylation inhibitor, 5-aza-cytidine, altered DNA methylation and disrupted migration as indicated by a reduction of migrated neurons and differentiation. These results indicate that chromatin is dynamically remodeled when NSCs transform from the quiescent state to active growth, and that DNA methylation modification is essential for neural stem cell differentiation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3