Immune Cell Populations in Nonhuman Primate Islets

Author:

Coffey Lane C. K.12,Berman Dora M.12,Willman Melissa A.1,Kenyon Norma S.1234

Affiliation:

1. Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA

2. Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA

3. Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA

4. Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA

Abstract

Islet transplantation is a promising cellular therapy for the treatment of type 1 diabetes (T1D). The immunogenicity of isolated islets has been of interest to the transplant community for many years, as upon transplantation, islets are damaged or destroyed through specific and nonspecific inflammatory and immune events. Antigen presenting cells (APC) are crucial intermediates in the generation of both innate and specific immune responses, and it has long been understood that some APC are resident in islets in situ, as well as after isolation. Our aim was to identify and characterize intraislet resident populations of APC and other immune cells in islets from nonhuman primates ( Macaca fascicularis) in situ (pancreas biopsies obtained prerecovery) and after isolation using immunohistochemistry, confocal microscopy, and flow cytometry. The numbers of cells obtained in situ are similar to those in islets postisolation. Each isolated islet equivalent contains an average of 21.8 immune cells, 14.7 (67%) of which are APC. Many of these APC are dentritic cells and, surprisingly, 50% are B lymphocytes. The number of islet-resident immune cells increases with islet size, with greater numbers in large versus small islets ( p < 0.001). The APC were localized around the exterior or spread evenly throughout the islets, with no definitive orientation identified. This knowledge will be useful to develop tailored modulation strategies to decrease immunogenicity, enhance engraftment, and ultimately prevent islet rejection.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3