Estrogen Replacement Therapy for Stroke

Author:

Pabon Mibel1,Tamboli Cyrus1,Tamboli Sarosh1,Acosta Sandra1,De La Pena Ike1,Sanberg Paul R.1,Tajiri Naoki1,Kaneko Yuji1,Borlongan Cesar V.1

Affiliation:

1. Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA

Abstract

Stroke is the third most common cause of death and severe disability among Western populations. Overall, the incidence of stroke is uniformly higher in men than in women. Stroke is rare in women during the reproductive years and rapidly increases after menopause, strongly suggesting that estrogen (E2) plays an important role in the prevention of stroke. Ongoing studies are currently evaluating both the benefits and the risks associated with E2 replacement therapy and hormone replacement therapy in stroke. Equally important is the role of E2 receptor (ER), as studies indicate that ER populations in several tissue sites may significantly change during stress and aging. Such changes may affect the patient's susceptibility to neurological disorders including stroke and greatly affect the response to selective E2 receptor modulators (SERMs). Replacement therapies may be inefficient with low ER levels. The goal of this review paper is to discuss an animal model that will allow investigations of the potential therapeutic effects of E2 and its derivatives in stroke. We hypothesize that E2 neuroprotection is, in part, receptor mediated. This hypothesis is a proof-of-principle approach to demonstrate a role for specific ER subtypes in E2 neuroprotection. To accomplish this, we use a retroviral-mediated gene transfer strategy that expresses subtypes of the ER gene in regions of the rat brain most susceptible to neuronal damage, namely, the striatum and the cortex. The animal model is exposed to experimental stroke conditions involving middle cerebral artery occlusion (MCAo) method, and eventually the extent of neuronal damage will be evaluated. A reduction in neuronal damage is expected when E2 is administered with specific ER subtypes. From this animal model, an optimal E2 dose and treatment regimen can be determined. The animal model can help identify potential E2-like therapeutics in stroke and screen for beneficial or toxic additives present in commercial E2 preparations that are currently available. Such studies will be informative in designing drug therapies for stroke.

Publisher

SAGE Publications

Subject

Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3