Quality of Air-Transported Human Islets for Single Islet Cell Preparations

Author:

Yamashita Shingo1,Ohashi Kazuo12,Utoh Rie1,Kin Tatsuya3,Shapiro A. M. James3,Yamamoto Masakazu2,Gotoh Mitsukazu4,Okano Teruo1

Affiliation:

1. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan

2. Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan

3. Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada

4. Department of Regenerative Surgery, Fukushima Medical University, Fukushima, Japan

Abstract

In new generation medical therapies for type 1 diabetes mellitus (DM), cell-based approaches using pancreatic islets have attracted significant attention worldwide. In particular, dispersed islet cells obtained from isolated pancreatic islets have been a valuable source in the cell biology and tissue engineering fields. Our experimental approach to the development of new islet-based DM therapies consisted of creating a monolithic islet cell sheet format using dispersed islet cells. In this experiment, we explored the potential of internationally transporting human islets from Alberta, Canada to Tokyo, Japan and obtaining viable dispersed islet cells. A total of 34 batches of isolated and purified human islets were transported using a commercial air courier service. Prior to shipping, the human islets had been in culture for 0–108 h at the University of Alberta. The transportation period from Alberta to Tokyo was 2–5 days. The transported human islet cells were enzymatically dispersed as single cells in Tokyo. The number of single islet cells decreased as the number of transportation days increased. In contrast, cell viability was maintained regardless of the number of transportation days. The preshipment culture time had no effect on the number or viability of single cells dispersed in Tokyo. When dispersed single islet cells were plated on laminin-5-coated temperature-responsive polymer-grafted culture dishes, the cells showed favorable attachment followed by extension as a monolithic format. The present study demonstrated that long-distance transported human islets are a viable cell source for experiments utilizing dispersed human islet cells.

Publisher

SAGE Publications

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3