Biofilm Formation and Antimicrobial Susceptibility of Non-Diphtheriae Corynebacterium Strains Isolated from Blood Cultures: First Report from Turkey

Author:

Özdemir Sinem,Aydoğan Okan,Köksal Çınar Fatma

Abstract

Objective: Non-diphtheriae Corynebacterium strains have been recognized as important pathogens after decades of confusion regarding their microbiological classification and clinical significance. The aim of this study was to identify non-diphtheriae Corynebacterium strains and the prevalence of biofilm formation and antimicrobial resistance. Method: In total, 126 non-diphtheriae Corynebacterium strains were isolated from blood cultures of inpatients with bacteremia in our hospital between January 2015 and January 2020. Blood cultures were analyzed with the Bactec-9120 system. Strains were identified using MALDI-TOF MS (Bruker Daltonics, Germany). Antimicrobial susceptibilities were determined using the Kirby-Bauer disk diffusion method on a Mueller-Hinton agar and evaluated according to EUCAST standards. Biofilm formation was assessed with the Congo Red Agar method. Results: Corynebacterium striatum and Corynebacterium matruchotii were the most prevalent with 29 and 26 isolates, respectively. Biofilm production was detected in 62.06% (18/29) of C. striatum, in 53.8% (14/26) of C. matruchotii, in 50% (9/18) of Corynebacterium afermentans, 50% (6/12) of Corynebacterium amycolatum, and in 46% (7/15) of Corynebacterium jeikeium strains. Among the five most prevalent strains, we found a high biofilm rate of 54%. The resistance rates to penicillin, clindamycin, ciprofloxacin, rifampicin, tetracycline, and gentamicin were 91.2%, 87.3%, 79.3%, 56.3%, 45.2%, and 39.6%, respectively. All 126 strains were susceptible to vancomycin and linezolid. Conclusion: Non-diphtheriae Corynebacterium strains isolated from blood cultures of hospitalized patients with bacteremia may have multidrug resistance and the ability to produce biofilm. These results emphasize the importance of identifying strains and determining their antimicrobial susceptibility and biofilm production potential.

Publisher

Galenos Yayinevi

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3