A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia

Author:

Prawitasari Adinda1ORCID,Nurliyanti Vetri1ORCID,Putri Utami Dannya Maharani1ORCID,Nurdiana Eka1ORCID,Akhmad Kholid1ORCID,Aji Prasetyo1ORCID,Syafei Suhraeni1ORCID,Ifanda Ifanda1ORCID,Mulyana Iwa Garniwa2ORCID

Affiliation:

1. Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, Serpong, Indonesia

2. Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia

Abstract

Microgrid systems are part of the most reliable energy supply technologies for rural communities that do not have access to electricity but the system is generally dominated by diesel generators (DG). The implementation of de-dieselization programs to ensure efficient diesel operations requires addressing several scenarios such as the replacement of diesel completely with 100% renewable energy sources at a significant cost. The design and selection of appropriate configuration, as well as operating patterns, need to be considered in adopting economical and reliable microgrid systems. Therefore, this study aimed to design an optimal configuration and operational pattern for microgrid systems for the frontier, outermost, and least developed (3T) regions using Baron Techno Park (BTP) in Indonesia as a case study. The optimization was conducted through HOMER software combined with benefit-cost analysis and the focus was on daily load variations, selection of control algorithms, reconfiguration of the power supply system, and setting of the diesel generator operating hours. The results showed that the optimum configuration was achieved using loads of resort, 24 kWp of PV, 288 kWh of BESS, load-following (LF) as dispatch controller, and 25 kVa of DG. Moreover, the proposed microgrid system produced 12% excess energy, 36% renewable fraction (RF), 13.25 tons reduction in CO2 emissions per year, $0.28 LCOE per kWh, $250,478 NPC, and a benefit-cost ratio (BCR) of 0.89. It also had a potential energy efficiency savings of 55.56% and a cost efficiency of 20.95% compared to existing system configurations. In conclusion, the study showed that the addition of DG to microgrid systems in 3T areas was more optimal than using only PV and batteries. An effective operating schedule for the DG was also necessary to improve RF and reduce expenses. Furthermore, other energy storage devices considered less expensive than batteries could be introduced to improve the economics of microgrid systems in the 3T region.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3