An integrated framework for techno-enviro-economic assessment in nanogrids

Author:

El Sayed Ahmad1ORCID,Poyrazoglu Gokturk1ORCID,E. E. Ahmed Eihab1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Ozyegin University, Turkey

Abstract

This paper presents an integrated framework designed for capacity planning of grid-connected nanogrid, a small solar and energy storage system that can provide kilowatt-level services to individual buildings. This framework comprehensively evaluates nanogrid cost-effectiveness, sustainability, and reliability, employing a multi-faceted techno-enviro-economic assessment approach. Traditional nanogrid capacity planning often prioritizes peak load requirements, which may lack optimality owing to occasional peak load occurrences. Conversely, optimizing solely for base load requirements might also fall short of effectiveness, compromising reliability and sustainability objectives. The proposed framework employs a three-step, integrated process for nanogrid (NG) capacity planning. Firstly, the Planner module identifies optimal asset sizing considering a two-day look-ahead logic. Then, the Operator module serves as a digital twin for the system, conducting hourly calculations over a short-term horizon. Lastly, the Evaluator module evaluates technical, environmental, and economic metrics for each solution, assessing the effectiveness of asset-sizing decisions. A simulated case study has demonstrated the effectiveness of the proposed framework. The technical assessment revealed that a PV size of 24 kW and a storage capacity of 91 kWh led to the most reliable solution, with a probability of local sufficiency of 95 percent. Furthermore, the environmental assessment showcased a renewable fraction of 94% with a PV size of 26 kW and a storage of 85 kWh. Economically, the analysis identified that a PV size of 12 kW and a storage size of 24 kWh led to the minimum total cost. In contrast, a PV size of 26 kW and a storage size of 85 kWh yielded a total operating savings of $4,801.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3