Starch – carrageenan based low-cost membrane permeability characteristic and its application for yeast microbial fuel cells

Author:

Christwardana Marcelinus12ORCID,Kuntolaksono Satrio3ORCID,Septevani Athanasia Amanda45ORCID,Hadiyanto H6ORCID

Affiliation:

1. Department of Chemistry, Diponegoro University, Jl. Prof. Sudharto, SH, Tembalang, Semarang 50275, Indonesia

2. Master Program of Energy, School of Postgraduate Studies, Jl. Imam Bardjo, SH, Pleburan, Semarang 50241, Indonesia

3. Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang 15314, Indonesia

4. Research Center for Environmental and Clean Technology, National Research and Innovation Agency, KST BRIN Cisitu, Bandung 40135, Indonesia

5. Collaborative Researh Center for Zero Waste and Sustainability, Universitas Katolik Widya Mandala, Surabaya 60114, Indonesia

6. Center of Biomass and Renewable Energy (CBIORE), Chemical Engineering Department, Diponegoro University, Indonesia

Abstract

Microbial fuel cells (MFCs) are an innovative method that generates sustainable electricity by exploiting the metabolic processes of microorganisms. The membrane that divides the anode and cathode chambers is an important component of MFCs. Commercially available membranes, such as Nafion, are both costly, not sustainable, and harmful to the environment. In this study, a low-cost alternative membrane for MFCs based on a starch-carrageenan blend (SCB-LCM) was synthesized. The SCB-LCM membrane was created by combining starch and carrageenan and demonstrated a high dehydration rate of 98.87 % over six hours. SEM analysis revealed a smooth surface morphology with no pores on the membrane surface. The performance of SCB-LCM membrane-based MFCs was evaluated and compared to that of other membranes, including Nafion 117 and Nafion 212. All membranes tested over 25 hours lost significant weight, with SCB-LCM losing the least. The maximum power density (MPD) of the SCB-LCM MFCs was 15.77 ± 4.34 mW/m2, indicating comparable performance to commercial membranes. Moreover, the cost-to-power ratio for MFCs employing SCB-LCM was the lowest (0.03 USD.m2/mW) when compared to other membranes, indicating that SCB-LCM might be a viable and cost-effective alternative to Nafion in MFCs. These SCB-LCM findings lay the groundwork for future research into low-cost and sustainable membrane for MFC technologies.  

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3