Effect of various silica-supported nickel catalyst on the production of bio-hydrocarbons from oleic acid

Author:

Riyandi Rafly1,Rinaldi Nino2ORCID,Yunarti Rika Tri3ORCID,Dwiatmoko Adid Adep2ORCID,Simanjuntak Fidelis Stefanus Hubertson1ORCID

Affiliation:

1. Department of Renewable Energy Engineering, Universitas Prasetiya Mulya, BSD City Kavling Edutown I.1, Tangerang, Indonesia

2. Research Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia

3. Research Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia

Abstract

The conversion of fatty acids into bio-hydrocarbons can be carried out through a deoxygenation (DO) reaction. Catalytic deoxygenation of fatty acids can occur through three reaction pathways: decarbonylation, decarboxylation, and hydrodeoxygenation. In this study, three kinds of silica were prepared: (i) silica obtained from the rice husk ash (RHA); (ii) synthetic mesoporous silica SBA-16; and (iii) commercial silica. All prepared silica was used as supported nickel (Ni) catalyst for bio-hydrocarbon production through DO reaction of oleic acid. The objective of this study was to investigate the effect of variations of silica on the reaction pathway and final products composition of DO reaction of oleic acid. The catalysts were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), surface area analysis, and NH3-temperature-programme desorption. Based on XRF and XRD analysis results, it can be concluded that nickel was successfully impregnated into all silica. All samples of catalysts were used in a reaction carried out at temperature of 285 °C under a pressure of 40 bar H2 for 2h. The results showed that all catalysts were able to convert oleic acid to bio-hydrocarbon with differences in products composition. The highest oleic acid conversion of 98.25% was achieved with Ni/RHA catalyst but the obtained liquid products was the lowest among other catalysts. It is found that this phenomenon was closely related to the acidity properties of the catalyst.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3