Orderly charging strategy for electric vehicles based on multi-level adjustability

Author:

Teng Changlong12ORCID,Ji Zhenya12ORCID,Yan Peng3ORCID,Wang Zheng3ORCID,Ye Xianglei12ORCID

Affiliation:

1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China

2. International Joint Laboratory of Integrated Energy Equipment and Integration in Jiangsu Province, Nanjing, China

3. State Grid Jiangsu Electric Vehicle Service Co., China

Abstract

The development of electric vehicles (EVs) is one of the essential ways to reduce environmental pollution. With the rapid growth in EVs, an orderly charging strategy based on multi-level adjustable charging power is proposed to address the problem of increasing peak-to-valley difference due to disorderly charging in different scenarios. Based on the information of multi-level adjustable charging power, information about staying in the residential area, and charging demands of EVs, this research designs a centralized charging mode with complete information under the centralized scenario and a decentralized charging mode with incomplete information under the decentralized scenario. This research takes the minimization of peak-to-valley difference in the residential area as the objective function and considers that the charging pile can have the function of multi-level adjustable charging power to support these two scenarios. Two charging modes of the charging pile are designed, and orderly charging model of EVs in the residential area is constructed. EVs can select charging time and charging power by using Bluetooth or code scanning in the charging pile. This research aims to design two orderly charging modes to effectively implement peak shaving and valley filling while ensuring the charging demand of EVs. This research uses the CPLEX solver in MATLAB to solve the objective. The simulation results show that EVs can reasonably select the multi-level adjustable charging power under different scenarios and provide a reference for engineering related to orderly charging. Strategy 4, proposed in this research, has the lowest peak-to-valley difference of the four strategies. The peak-to-valley difference is only 87 kW under the centralized scenario, and the peak-to-valley difference is 282 kW under the decentralized scenario.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3