Production of biodiesel (isopropyl ester) from coconut oil by microwave assisted transesterification: parametric study and optimization

Author:

Rachmaditasari Rheinanda1,Darojat Muhamad Irfaid1,Mahfud Mahfud1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Industrial and System Engineering, Institut Teknologi Sepuluh Nopember, Indonesia

Abstract

Biodiesel, a renewable fuel for diesel vehicle engines, has been commonly produced from transesterification process involving triglycerides from vegetable oil with alcohol. One of the most promising candidates for vegetable oil due to its abundance in Indonesia is coconut oil. However, the short carbon chain present in coconut oil necessitates the use of longer-chain alcohol types to adjust to the biodiesel carbon chain, such as isopropanol. Therefore, this research focused on producing biodiesel (isopropyl ester) from coconut oil using isopropanol and NaOH catalyst through a transesterification process. To enhance this process, microwave technology was utilized for its ability to lower the biodiesel production reaction time from the conventional one-hour timeframe to less than ten minutes, increase energy efficiency, and improve biodiesel quality. The primary objective was to investigate the impact of reaction time, catalyst concentration, and microwave power on the isopropyl ester yield. Further optimization was conducted using Response Surface Methodology (RSM) with Box-Behnken Design (BBD) to illustrate the model's effectiveness and applicability. Based on BBD optimization simulation, the optimal condition for producing isopropyl ester from coconut oil using microwave technology is a 1-minute reaction time, 0.2 wt.% NaOH catalyst concentration, and 443.9 W microwave power, maximizing the yield to 99.89%. This research highlights the potential of microwave assisted transesterification and the reliability of this innovative approach, contributing to the development of isopropyl ester production with enhanced quality that meets the specifications of the Indonesian National Standard (SNI).

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3