Boosting thermal regulation of phase change materials in photovoltaic-thermal systems through solid and porous fins

Author:

Namuq Sura A.1ORCID,Mahdi Jasim M.1ORCID

Affiliation:

1. Department of Energy Engineering, University of Baghdad, Baghdad, Iraq

Abstract

This study explores the integration of porous fins with phase-change materials (PCM) to enhance the thermal regulation of photovoltaic-thermal (PVT) systems. Computational simulations are conducted to evaluate the impacts of different porous fin configurations on PCM melting dynamics, PV cell temperatures, and overall PVT system effectiveness. The results demonstrate that incorporating optimized porous fin arrays into the PCM region can significantly improve heat dissipation away from the PV cells, enabling more effective thermal control. Specifically, the optimized staggered porous fin design reduces the total PCM melting time and decreases peak cell temperatures by about 5°C . This is achieved by creating efficient heat transfer pathways that accelerate the onset of natural convection during the PCM melting process. Further comparisons with traditional solid metallic fins indicate that while solid fins enable 12.2% faster initial melting, they provide inferior long-term temperature regulation capabilities compared to the optimized porous fins. Additionally, inclining the PV module from 0° to 90° orientation can further decrease the total PCM melting time by 13 minutes by harnessing buoyancy-driven convection. Overall, the lightweight porous fin structures create highly efficient heat transfer pathways to passively regulate temperatures in PVT systems, leading to quantifiable improvements in thermal efficiency of 16% and electricity output of 2.9% over PVT systems without fins.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3