Utilization of Dairy Waste Scum Oil for Microwave-Assisted Biodiesel Production over KOH-Waste Eggshell based Calcium Oxide Catalyst

Author:

Mohd Johari Siti Aminah12,Ayoub Muhammad12,Lee Jhung Zhi12,Rashidi Nor Adilla12,Shamsuddin M Rashid1

Affiliation:

1. Centre for Biofuel and Biochemical Research (CBBR), Institute of Sustainable Living (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia

2. Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

Abstract

The sustainability can be maintained by utilizing the available waste as feedstock and catalysts such as dairy and eggshell waste respectively for biodiesel production. In this study, the calcium oxide (CaO) synthesized from calcined eggshell was doped with potassium hydroxide (KOH-ECaO) via wet impregnation method and analyzed the catalyst performance on biodiesel production from dairy waste scum oil (DWSO) via microwave-assisted transesterification.  The catalyst was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy equipped with Energy Dispersive X-ray (SEM-EDX), Brunauer-Emmett-Teller (BET) and Thermogravimetric analysis (TGA). The fatty acid methyl ester (FAME) contents were deduced by Gas Chromatography-Mass Spectrometry (GC-MS). The KOH-ECaO catalyst shows good potential based on the characterization analysis such as high pore size (25.5 nm) which is supported by SEM pattern analysis. The highest biodiesel production (75%) was obtained at optimum reaction parameters conditions. The optimized conditions were discovered to be 3 wt.% of catalyst, 16:1 of methanol to oil molar ratio, reaction temperature of 65°C and 15 minutes of reaction time as microwave provided faster reaction for the transesterification. These innovative results showed that KOH-ECaO could enhance the biodiesel production from DWSO which encourage the usage of waste for wealth product.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3