Automatic control of constant temperature and humidity in building air conditioning systems based on frequency domain analysis

Author:

Wang Lihui1ORCID

Affiliation:

1. Department of Architectural Engineering, Shijiazhuang University of Applied Technology, Shijiazhuang 050081, China

Abstract

How to solve their automatic control of constant temperature and humidity gradually becomes a research hotspot as the continuous upgrading of air conditioning systems. This study aims to optimize the traditional proportional-integral-differential controller for improvement to solve the time-delay instability phenomenon in temperature and humidity control. The objective of this study is to optimize existing proportional-integral-differential controllers to improve the time-delay instability problem that is common in temperature and humidity control. Firstly, it treats the controlled object as a first-order and second-order system with time-delay characteristics. Next, the Smith predictor controller is generalized equivalent to ensure that the equivalent system does not contain time-delay. Finally, an analysis of the first-order and second-order closed-loop control system is conducted by combining Smith predictive controller and proportional-integral-differential controller. The system achieves the goal of automatic control of constant temperature and humidity by adjusting the control parameters. The experiment showcased that the temperature control time of the proposed control scheme under first-order and second-order time-delays was 16 s and 3 s, respectively. Meanwhile, the humidity control time was 14 s and 13 s, respectively. In practical applications, the proposed control scheme achieved good control effects in all four seasons. This indicates that the controller designed in this study possesses good control performance. It also can achieve the goal of constant temperature and humidity control. This can provide technical support for the automation control of air conditioning systems.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3