Consideration of various configurations of SG6043-based rotor applied in small capacity horizontal axis wind turbine

Author:

Dinh Van Thin1ORCID,Nguyen Huu Duc1ORCID,Le Quang Sang2ORCID

Affiliation:

1. Faculty of Energy Technology, Electric Power University, Viet Nam

2. Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, Viet Nam

Abstract

The SG6043 airfoil model is well known for its high aerodynamic efficiency and it is suitable for designing small wind turbine blades. This paper determined the optimal blade configurations using only the SG6043 airfoil model with ten different lengths from 1 m to 10 m. Then, it proposed the most suitable model for a rated wind speed of 5 m/s in Vietnam. The chord and twist values of each blade’s part were optimized by using the Betz optimization method (BOM) in the Qblade open software. Several important characteristic quantities such as lift coefficient (Cl), drag coefficient (Cd), power factor (Cp) and power (P) of the different blade configurations are determined by using a combination of both XFLR5 code and Qblade software. After that, parameters related to operation such as pitch angle and rotation speed of the rotor were also investigated to find the operating conditions for the best efficiency of wind energy exploitation. The obtained results show that the Cp of the blades has a maximum value of about 0.476 and the P has a value of up to 95.319 kW in operating conditions with a wind speed range between 1 m/s and 10 m/s. In addition, the ratios of power to blade surface area (P/S) and the ratios of power to blade volume (P/V) at the wind speed of 5 m/s were also investigated. The results show that rotors with blades ranging from 3 m to 5 m will give much higher P/S and P/V values than other blade configurations under these operating conditions. This emphasizes that these blade configurations will bring more economic benefit because they will consume less material and reduce production time while still ensuring the required capacity value. Finally, the 5 m blade rotor with a capacity of 2.750 kW at a rated wind speed of 5 m/s was proposed as the rotor suitable for individual household use. This design can help millions of Vietnamese households be proactive in their power source, thereby contributing to the significant reduction of CO2 emissions from coal-fired power plants.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3